UTILIZATION OF BICARBONATE BY APPLE FRUIT PHOSPHOENOLPYRUVATE CARBOXYLASE

MICHAEL M. BLANKE, DERECK P. HUCKLESBY, BRIAN A. NOTTON* and FRITZ LENZ

Institut für Obstbau und Gemusebau der Universitat Bonn, Auf dem Hugel 6, D-5300 Bonn 1, F.R.G.; *Department of Agricultural Sciences, University of Bristol, Long Ashton Research Station, Long Ashton, Bristol BS189AF, U.K.

(Revised received 30 January 1987)

Key Word Index-Malus domestica.; Rosaceae; apple; fruit; photosynthesis; phosphoenolpyruvate carboxylase.

Abstract—Phosphoenolpyruvate carboxylase (PEPC), was partially purified from apple fruit cv Golden Delicious. Kinetic values for PEP and HCO₃ suggest a capacity for efficient carbon dioxide refixation. PEPC activity was maximal between 5-10 mM carbonate (HCO₃) and inhibition was observed above 10 mM HCO₃. In conditions of PEP-saturation, HCO₃ inhibition of apple fruit PEPC activity appeared non-competitive with respect to PEP and was partially reversible.

INTRODUCTION

In a preliminary study [1] of the photosynthetic character of apple (Malus domestica Borkh) fruit, phosphoenolpyruvate carboxylase (PEPC) (E.C. 4.1.1.31) was identified in the fruit tissue. Phan [2] suggested C₄ photosynthesis in apple fruit was based on the presence and activity of C4 organic acids and enzymes, interpretations of chloroplast morphology and the existence of a carbon dioxide concentrating mechanism. Apple fruit PEPC and chloroplasts have been found to differ in type from those found in C₄ photosynthetic tissue [1, 3]. In an attempt to clarify the photosynthetic position of apple fruit we studied PEPC particularly in relation to kinetic constants for HCO₃, relating these to the known physiological concentrations. In fruit, but not in leaf tissue, internal carbon dioxide concentration may reach 1-5% [4-6]; physiological HCO₃ at these concentrations may become relevant for inhibition of PEPC activity.

RESULTS AND DISCUSSION

The kinetics of apple fruit PEPC with respect to K_m (PEP, HCO_3^-) and K_i (HCO_3^-) are shown in Table 1. Apple fruit PEPC appears to be an efficient carboxylating enzyme with low K_m (PEP) and a large capability for refixing respired carbon dioxide. The kinetic experiments were done with the aid of the coupled malate dehydrogenase (E.C. 1.1.1.31) (MDH) reaction (see Experimental), which was found to be insensitive to the HCO_3^- concentration used.

The kinetic constants (Table 1) were measured in conditions when the enzyme was saturated for PEP, i.e. $20 \times K_m$. However, at subsaturating PEP concentrations, apple fruit PEPC showed substrate competition between PEP and HCO $_3$ at K_m (PEP) concentration and a non-competitive behaviour above a concentration of 0.2 mM PEP (Fig. 1). This effect is similar to that previously reported with PEPC from potato tubers [7].

Maximum PEPC activity of apple fruit was obtained at 5-10 mM HCO₃ (Fig. 2) and inhibition of activity started above 10 mM, a concentration which corresponds to ca 5% CO₂ at pH 7.8 which is the optimum pH for this tissue [8]. In apple fruit, internal carbon dioxide rises to 1-5% at maturity [4-6] which is below the starting point for inhibition of PEPC. Consequently under physiological conditions, inhibition by HCO₃ would occur only rarely even in tissue with excess carbon dioxide. The comparative HCO₃ inhibition data essentially confirm observations with single HCO₃ concentrations, which were reported to be inhibitory, such as 3-5% carbon dioxide [9] and 30 mM HCO₃ [10] with CAM tissue.

Partially purified apple fruit PEPC was assayed prior to and after addition of HCO₃ at a concentration which caused 50% inhibition of activity. Excess HCO₃ was then removed from the extracts by gel filtration. Relative to the initial activity under optimum conditions (5 mM HCO₃), large HCO₃ concentrations (250 mM) depressed the PEPC activity to 55% and this was restored to 88% by removal of the HCO₃ (activity expressed/mg protein), demonstrating the reversibility of the inhibition.

Table 1. Kinetics of apple fruit PEPC

Tissue	K _m (PEP) (mM)	K _m (HCO ₃) (mM)	K _i (HCO ₃) (mM)	V_{max}	
				(nkat /g fr.wt)	(nkat /mg protein)
Fruit	0.09	0.20	106	1.8	4.2
Seeds	0.09	0.20	115	5.4	10.8

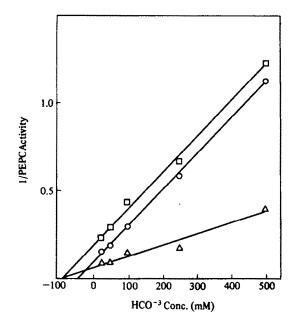


Fig. 1. PEPC kinetics. Interaction of the inhibition of apple fruit PEPC activity by large bicarbonate concentrations at various PEP substrate levels. PEP $1 \times K_m(\Box)$, $2 \times K_m(O)$, $20 \times K_m(\triangle)$.

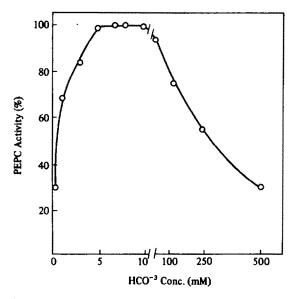


Fig. 2. The response of PEPC activity to bicarbonate concentration.

EXPERIMENTAL

Plant material. Apple fruit cv Golden Delicious were field grown at Long Ashton on 8 year old EMLA 106 rootstock.

Preparation of extracts and enzyme assays. PEPC was partially purified as previously reported [1]. Activity was measured spectrophotometrically at 340 nm by coupling the reaction to the

oxidation of NADH from MDH. The assay medium contained 50 mM Tris-HCl pH 7.8, 5 mM MgCl₂, 0.25 mM EDTA, 2 mM DTT, 10 units of MDH, 0.1 mM NADH and variable amounts of HCO₃ (5 mM in the standard assay). The reaction was started by addition of PEP.

Evaluation of kinetic constants. Initial rate measurements. using the above assay, were recorded using a double beam spectrophotometer linked to a microcomputer. K_m and V_{max} values were calculated using a computer programme (Hucklesby, D. P. unpublished) based on a least squares analysis of data after Hanes transformation of s/v against s [11]. Estimates were also made from the same data and computer programme by direct linear plot [12] selecting the median values for K_{-} and V_{max} [12]. The two methods gave good agreement. K_i was measured using a graphical method [11] as 1/v against i. Values given are derived from at least two repetitions of two extracts with at least six substrate concns. With PEPC, HCO₃ serves as a substrate at small and an inhibitor at large concns. For each expt, the HCO₃ concn giving max PEPC activity was evaluated to define the range of HCO₃ concns subsequently used in the kinetic assays. All chemicals were made up in Tris buffer adjusted to pH 7.8 at room temp. at which the calculated endogenous HCO₃ concn, following Hasselbach-Henderson equations [8], was 0.3 mM HCO₃, this value was integrated into all data presented in this paper.

MDH activity was measured spectrophotometrically at 340 nm in the direction of oxaloacetic acid reduction using a standard procedure [13]. Protein was measured using a protein assay reagent (BioRad) according to the manufacturer's instructions with ovalbumin as a standard.

Acknowledgement—We thank Prof. K. Treharne for his support and interest throughout this work and gratefully acknowledge a grant to one of us (M.M.B.) from Deutsche Forschungsgemeinschaft. Long Ashton Research Station is funded through the Agricultural and Food Research Council.

REFERENCES

- Blanke, M. M., Notton, B. B. and Hucklesby, D. P. (1986) Phytochemistry 25, 601.
- Phan, C. T. (1973) Proc. 29th Ann. Meet. Can. Fed. Biol. Soc. (Edmonton), 51.
- Blanke, M. M. and Cordes, D. (1987) Long Ashton Ann. Rep. for 1985 (in press).
- Hall, E. G., Huelin, F. E., Hackney, F. M. V. and Bain, J. M. (1955) Fruits 10, 149.
- 5. Henze, J. (1969) Qual. Plant Mater. Veg. XIX, 229.
- 6. Marcellin, P. (1975) Coll. Int. CNRS 238, 241.
- 7. Smith, T. E. (1968) Arch. Biochem. Biophys. 125, 178.
- Umbreit, W. W., Burris, R. H. and Stauffer, J. F. (1972) in Manometric and Biochemical Techniques 5th edn, p. 22. Burgess, Mineapolis.
- 9. Walker, D. A. and Brown, J. M. A. (1957) Biochem. J. 67, 79.
- Jones, R., Wilkins, M. B., Coggins, J. R., Fewson, C. A. and Malcolm, A. D. B. (1978) Biochem. J. 175, 391.
- Dixon, M. and Webb, E. C. (1964) in Enzymes p. 327. Longman, London.
- Cornish-Bowden, A. (1976) in Principles of Enzyme Kinetics. Butterworths, London.
- Bergmeyer, H. U. (1974) in Methoden der Enzymatischen Analyse, 3rd edn, p. 649. Verlag Chemie, Weiheim.